If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-17y=0
a = 1; b = -17; c = 0;
Δ = b2-4ac
Δ = -172-4·1·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-17}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+17}{2*1}=\frac{34}{2} =17 $
| 0.6-3.7=z | | -5(6+5p)=-205 | | 0.6-3.7=b | | 0.5(x+6)=2(5-x) | | 5x+16=4x+12 | | z-4-5=-16 | | 12y+4=13y-9 | | 12y=4=13y-9 | | 36=(-12)+w+31 | | -8n-2(3n+2)=108 | | 7x+-3=x+9 | | 6+22n=54 | | 4x2+25x−47=−8x−3−53 | | 17x-(8-x)(3x+7)=91 | | 7-+32+c=180 | | 2m+5=3m-5 | | 6.4+6n-5n=2.8 | | -4=12(x-4) | | 36=4b+16-3b | | 2.8=x/5 | | 6.3+b=8.6 | | x2+4x+4=0x2+20=0 | | 1/3x+1=-5 | | 14x | | 55-110x=440 | | 13x+1=−5 | | 110-440x=55 | | 440-110x=55 | | 4(0.25)+2x=17 | | -3x+4(-7+7x)=147 | | 3x+20+4x-12=180 | | 44+104+c=180 |